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Abstract: 1t provides that if the space time of perfect Magnetofluid admits inertial reference frante then:

() The matter energy density is preserved along the flow lines.

(ii) The isotropic pressure is conserved along the magnetic lines.

(iii) The magnetic lines of perfect Magnetofluid admitting IRF are expansion Jree if and only if the magnitude of the magnetic
field is preserved along these lines.
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1. Introduction:
A Sutve of literature exposes the various types of tetrads used in the general theory of relativity which
can be categorized in the following types:
(1) One time like and 3 space like vector fields due to Bisenhart, 1960.
(2) One null and three space like due to Synge, 1972.
(3) Two null and two space like vectors due to Hall, 1977.
(4) Two real and two complex null vectors due to Newman-Penrose, 1962.
This paper deals with first type of tetrad fields. Thus the most advantages formalism of orthonotmal tetrad
fields possessing sixteen independent compuneuls und exhibiting a- geometey which is more general than
a
Riemannian geomelry is described through a sct of tetrad vectors A ( the bracketed letters denote tetrad

(m)

suffixes and non- bracketed letters denote tensor indices) satisfying the following relations:

a m e @ @ n
A A = &6 ; 4 A = 4 - (11
(m) b b (M) ga m
a a 1 (m)
A A = gun A = Yab
m) e g
So also the associated Ricci totation coefficients are given by
Y b
afs = A@ap Mgy As) )
The tetrad vector fields are taken as
a
A = (V,W® N U9 s (1.3)
(m)
Subject to conditions
Uut ==V, V® = -W,We = —NgN® = .. (1.4)
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And

Uy  =u we =U,N* =Vywe=V,N*=W,N* =0 .. (15)
Thus the choice for tetrad field vector is such that one vector U is time like and other three unite vectors
Ve, W, N are space like.
Remark:l( follows from the defining expression (1.2)

= U
afd  fad’

2. Anisotropic Magnetofluid Scheme

In 1955, Lichnerowicz has suggested a definite material scheme in relativistic hydrodynamics exposed

through the stress energy tensor.

7;%’7 = pULU, + PV + PyW,W, + P3NoN,. @)

Here, p is the matter energy density and Py, P, P3 (Py # P, # P3) are the anisotropic
pressures acting along the 3-orthonormal space directions V¢ W% N% . The tetrad field
vectors(V ¢, W, N4, U%) satisfy the relations (1.4) and (1.5).

Note;If P, = P, = P; = P the equation (2.1) becomes

Tap = pUgUp + P(V,Vy, + W W, + NgNp) (2.2

Le. Tap = (0 + P)UUL + Pgap L (23)
[Greenberp, 1970b and Shaha 1974].

This is well — known form of relativistic petfect fluid. Hence by looking at the nature that the three
spatial pressures (Py, Py, P3)acts along the three different directions (V,W,N). We suppose that the stress
energy tensor (2.1) describes relativistic anisotropic flud.

The scheme of relativistic magneto hydrodynamics as designed by Lichnerowicz (1967) consisting of a
relativistic charged perfect fluid with infinite conductivity and constant magnetic permeability. According to
the formation of this scheme, the condition of infinite conductivity with the principle of conservation of
current demands the condition of zero electric field. Thus the electromagnetic field in this situation gets
reduced to magnetic field only with respect to the velocity of the considered fluid. Consequently the stress
energy tensor for electromagnetic field undet the assumption of infinite conductivity and constant magnetic
permeability () takes the form.

:;lfl = 1t[(2 gap = ValUp ) = heh® = hahp]. . (2.4)
Here, the magnetic field vector hg is space like and satisfies the properties
U%h, = 0.h%*h, = —H? ... (2.5)
It follows from these results
h® p hgy = —h%pUq ... (2.6)
And
hephe = =S H2, .27

The magnetic field exhibited by the tensor (2.4) is subject to satisfy the only valid set of Maxwell’s equation
given by

(Ueht —U%n®),, =0 .. (2.8)
Amalgamation of matter field andElectromagnetic Field

A more general anisotropic Magnetofluid scheme (Shaha, 1974) can be formulated by the
mixture of the two stress energy tensors given by equation (2.1) and (2.4) in the form
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T, = 1;%1) n Z:z o (29)
Lo Toy = pUuUy + PoVaVy + P WoWy + PsNalNy + | (5 9w — Uuly) = heh® = hohy \ .. (2.10)
1f we choose the magnetic field in the direction of the tetrad vector V4, that 1s

ve="=pe . @11)

Then the form of equation (2.10) changes to
1 1 g1 i
Top = (p+ LuH?) UUy + (P - L uH?) VY, + (P, + L uH?) W, + (P + LU Noly . 212)
te Tgp = AULU, + BV V, + CW Wy + DNgNp... (2.13)

with the values

A=(p+3uH?) .. (2.14)
B=(P, — 2 uH?) ... (2.15)
¢ = (P, +3uH?) .. 2.16)
D= (P3 +2uh?) . (217)

Thus the anisotropic Magnetofluid scheme 1s described by the stress energy tensor (2.13) in terms of
otthonormal tetrad the vector fields (V4 W, N, U%) with magnetic field acting alongV ®. The magnetic
field part in (2.13) is subject to satisfy Maxwell’s equation given by (2.8). These Maxwell’s equation with the
choice of

h® = HV® ... (2.17a)
Take the form

(U*HV? — UPHV%) ), =0 ... (2.18)

ie Hy(U*V? = UPV®) + HU®HV® — UPHV®), =0 . (2.19)

Remark (1): This scheme described by the stress energy tensot (2.1) is known to be compatible with class
one space times (Pandey and Gupta, 1970).

Remark (2): The Lichnerowicz (1967) for thermodynamical perfect fluid with infinite electrical conductivity
and constant magnetic permeability can be recovered from the expression (2.13) by puttingP; = PPz = D.
The form of this stress energy tensor is given by

Tup = (p +p + WHDUaUy — (p + 5 1H?) gap — #H* HaHy. - (2:20)
This we describe as the perfect Magnetofluid scheme.
3. Field equations for anisotropic Magnetofluid scheme

The main equations governing the behavior of the motion of telativistically moving particles in the
space time of anisotropic Magnetofluid is characterized by two types of differential relations
1. Einstein’s Field Equations,
2, Maxwell’s Equations.
(1) Einstein’s Field Equations:

The geometrical and dynamical structure of the space tume manifold is described through the well-
known Einstein’s Field Equations. These are ten independent, non-linear differential equations of order two
which establish a definite relation between Ricci tensor Rgp, Ricci scalar R and stress energy momentum

tensor Ty, In the form
i s
Rap = 5RGap = —KTap. e 341)
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Where
_ 8mG
=&
Is the coupling constant and G is Newtonian gravitational constant. Here the right hand side Ty, of the

expression (3.1) will explore the dynamical features of the anisotropic Magnetofluid under consideration
where-as the left hand side of (3.1) describes the geometrical features of the space time,
(2) Maxwell’s Equations:
In accordance with the approximation of infinite conductivily we get the only set of
Maxwell equations followed by the magnetic blade as suggested by Lichnerowicz (1967) are
[H(U?H? — U"H%)], =0 . (3.2)
ie. USHPH,y, ~ HyUPH® + HUCHY , + HHPUS,, — HUY ) H* — HUPHY,, = 0 %)
If we contract suitably this equation with V¢, W% N¢ U? (hen we get the following consequences of
Maxwell equation (In terms of Ricci rotation coefficients)

H( o+ 15s] = Hav® e (34
H o9+ 433] = Hal® R
4)2/1 N 1)2/4 B
421 - 1§4 - 8)

4. The space time of perfect Magnetofluid
The space time is characterized by stress energy tensor (2.20)

Tap = (p +p + uH*)U U, — (P + %MHZ) Gap = thghy o (47)
By making use of field equations (3.1) we find the value

RupU°U? = —£[1,, - 2T gap| USUP L (42)
This expression with equation (4.1) generates the result.

RapUSUP = —2[p + 3p + 3uH?] = M, (say) . (43)
Hence the result due to Ehlers and Kundt, 1962 and Ellis, 1971 in the form,

RapUSUP = 0 +562 + 2(0% —~ w?) - U%,, Y

Get reduced to
—g[p+3p+3uH2]=9+§92+2(02—w2)—U‘1;a . (45)
In order to derive the equation of continuity and stream lines of the perfect Magnetofluid, we use the

stress energy tensor (4.1) in local energy balance equations T?,;, = 0. Hence we get the continuity equation
and fluid path lines equation in the form

p++p)0=0p=puul ... (4.6)
And

AU® = B',h" + u(h®h?)., h¢a B CY)
Where

A=p+p+,uH2,B=p+%uH2 .. (4.8)

5. Inertial reference frame and the space time of perfect Magnetofluid
A concept of central meaning in, Newtonian physics in the inertial reference frame (IRF). It may be
detined as such a frame, in which no inertial forces occur. Nevertheless, general relativity too needs the
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concept of reference frame, because the results of measurement always depend on the motion of the
respective observer. Accordingly, reference frame represented by obscerver ficlds are necessaty to establish a
connection between the mathematical quantities (defined independently of reference frame) and the measured
variables (dependent the observer). Uhlmann, 1960, Dchnen 1970 reference frames form an essential part of
general relativity. By giving the physical definition of Initial Reference Frame (IRF), Audretsch (1971) has
studied the properties of solutions of Einstein field cquations admitting IRF. Accordingly a space time
admitting IRF satisfy the following kinematical properties

S 2 2N AN ;
0= {411 % 492+ 433) = -Gl
_i(7 y
Was =3 (412 = 4p1) GaWo = Vola) +3 (13 = 45p) Walls = NaW)
1y _
+2(4h1 413) (N Vy — NyV,) = 0 .. (5.2)

0w = (411 +30) Voo + (4 +39) WaWs + (43 +56) Nals + 2 (412~ ap) (W +
VbWa)

v 4
+3 (43— 432)(WN,,+N W) +3 (15 - 431)(N V, + N,V,) =0 o (5.3)
a__[vV*, yW*  yN© 5.4
[414+424+434] .  (54)
[‘rom the above conditions we write
14 14
4aﬂ=—4ﬂa,a,ﬁ=1,2,3,a;¢ﬁ ..(55)
And
14 Y Y L _ ;
411 = 422 =433~ 0 [vide (5.1) = (5.2)] . (5.6)
Y ) .y
4“3 4’,8“ ,a,ﬂ = 1,2,3 lVlde (53)J (5.7)
=0 [vide (5.4 . (5.8)
Accordingly, the gradient of the flow vector becomes zero,
Le. Uzp = 0. .. (5.9)

This result can be dynamically interpreted as “3- momentum and energy of the freely moving test particle as
measuted by these inertial obsesrvers do not change with time”.

We now, will investigate the properties of perfect Magnetofluid space time described by stress
energy tensor (4.1) admitting IRF. The set of Maxwell equations (3.4) — (3.7) under the IRF conditions give
the following results

hb, =0 ... (5.10)

H?,Ub = 0. ... (5.11)
Hence we conclude that
(@) The magnetic lines are divergence free [vide equation (5.10)].

(i) The magnitude of the magnetic field is consetved along the world line [vide equation(5.11)].

Theorem: If the perfect Magnetofluid space time admits IRF then
(i) The matter energy density is preserved along the flow lines,
(i) The isotropic pressure is conserved along the magnetic lines.
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Proof:
() I we use conditions (5.1) — (5.4) of IRF in the continuity equation (1.6) of the perfect Magnetofluid then
we get
p.U% = woe (5:12)
if) Again the equation of stream lines for the perfect Magnetofluid (4.8) yiclds the result
8 q P ) y
(P %uHZ).C h% + u) (h°hP) ,h%, = 0 .. (5.13)
This with equation (5.10) generates
(r+ %uHZ) he€ + uh® ,hb = Q. . (5.14)
,C
If we transvect this equation by h, then we get
P.h = 53:(5.15)

Thus equations (5.12) and (5.15) justify the validity of the theorem,
Rematk: The equation (4.4) under the conditions of inertial reference frame reduces to

RpUUP = U4, vz (5.16)
This for perfect magnetofluid yields
U%q =3 (p +3p + 3uH?) .. (5.17)

This provides the expression for active gravitational mass-density for perfect magnetofluid under the
condition of inertial reference frame (Ellis, 1971).

Note: The expression for the expansion parameter 8 of magnetic field lines is given by

6" = K%, —UUK,,, o (5.18)
a
Where K% = %
. * __ _’L‘i — ayrb _’E
ie. 0 _(H);a Uey [H];b
2 v _ Wal=h%a  [hapH=Ral.p] ;rarrb
ve o == [ H? Ja
a ; appb
6* = — "H’f“ + “"”“;’f T vide (5.9)  (5.10)]
« _  hOHg . .
0* =— 7z Lvide equation (5.11)] w(5.19)
Thetefore,
0"=0 & Hy,h* = ... (5.20)

Hence we conclude that the magnetic lines of the perfect magnetofluid admitting Inertial Reference
Frame are expansion free if and only if the magnitude of the magnetic field is preserved along these lines.
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