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Abstract: The implications of a space-time admitling one parameter group of conformal motions on the dynamical variables
involved in the self-gravitating Magnetofluid which is anisotropic in nature are examined. Moreover, it is proved that the
symmetry vector chosen is different direction generates two kinds of equations of state. 1t is shown that the magnetic field vector is
normal to the plane of rotation if it is one of the symmetry vectors.
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1. Iatroduction:

The study of geometrical symmetries like motions and collineations is motivated by the necessity of
discovering conservation laws and to throw light on unknown properties of dynamical variables involved in
the study of relativistic distributions of matter. One of the symmetries known as conformal motion as
described by Davis[1] has the defining expression

LxGab = ¥Gab
Here, Ly is the Lie derivative with respect to vector field ¥ and ¥ is an arbitrary function of co-ordinates. It
is found by Herrera et al [3] that under this symmetry of conformal motions the Einstein’s field equations
cotresponding to anisotropic matter yields a class of spherically symmetric and static solutions. By tracing out
the similarity between the stress energy tensor for anisotropic matter distribution as given by ITerrera et al [3]
and the stress energy tensor for Magnetofluid as given by A. Tichnerowicz [4], we have suggested stress
enetgy tensor for Magnetofluid which is anisotropic in character.

The aim of this paper is to study the dynamical aspect of this anisotropic Magnetofluid when the
space time admits the geometrical symmetries called as conformal motion in context of the general theory of
relativity. Less weightage is given to the properties of anisotropy of a fluid.

In scction 2, the stress energy tensor for Magnetofluid with anisotropic nature is designed and in
section 3, the necessary field equations are stated. The equations of motions of the Magnetofluid are detived
in section 4. In section 5, we discuss the effects of conformal motions on dynamical properties of the
Magnetofluid. The corresponding conservation law generator is derived. Throughout the investigations, we
have considered four dimensional Lorentzian manifold with signature (s 1)

2. Anisotropic Magnetofluid
The siress energy tensor characterizing the relativistic anisotropic fluid is given by Herrera et al [3]

Tap = (p + PU Uy — Prgap + (P — P1)XgXp ... (2.1)

Whete U, is the four velocity of the fluid, x4 is unit space like vector orthogonal to Uy, p is the
energy density, P is the pressure in the ditection of X, and Pyis the pressure in the direction perpendicular to
Uy and x4 both (i.e. along S, S,U® = S, H* = 0),
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We have the stress energy tensor for relativistic charged perfect fluid with infinite conductivity and
constant magnetic pesmeability formulated by A. Lichnerowicz 4] in the form

Tub . (/) e HhZ)Uan - (P + I/Z.uhz).gab - :uh'ahb- (2'2)

Llere, pis the matter energy density, P is the isotropic pressure, @ is the magnetic permeability which
is constant. The time like vector U, and space like vector h, salisfy the properties:

U Ut =1, heh® = =h?,Uh% = 0. ... (2.3)
By readjusting the terms in (2.2) we can write this expression as

Tap = (5 + PYUeUy = Pap + (P — PYH,H,. ... (2.4
The term involved here have the meanings.
p(= p + "uh*): Matter energy density for the Magnetofluid.
P(= P+ %uh?): The pressure in the direction normal to UgandH,,.
Ho(= h™*hg): The unit space like magnetic field vector.
P(= P — "uh?): Pressutc in the direction ofH,.

It follows from (2.1) and (2.4) that the stress energy momentum tensor given by (2.4) also

reptesents an anisotropic character. The form (2.4) generates the stress energy tensor for isotropic perfect
fluid when

P=P=uh?=0 .. (2.5)
Thus we have after refer to stress energy tensor given by (2.4) for the anisotropic Magnetofluid. The
anisotropy seems to be generated due to magnetic field.
Note: We get from (2.4)

TopUUP =g =p+ %uh?, ... (2.06)
TawH*H? = P, o @7
T=Twg®=p—2P-P. .. (28

Hence it follows from (2.6) that the energy density for the anisotropic Magnetofluid is the time like eigen
value is given by (2.7) and the rest mass is given by (2.8).

Remark: The magnetic field involved in (2.4) is subject to satisfy the Maxwell field equations which are given
in section3.

3. Field equations

To study the space time of anisotropic Magnetofluid we mainly use the following field equations.
A) Field equations of gravitations

The general relativistic structure of the space time is governed by the well-known Einstein’s

field equation in the form

Rap = 3Rgap = KTy, BCRY
Where Rgy, is the Ricci tensor, R is the Ricci scalar, k is the coupling constant and Ty, is the stress energy
tensor described by (2.4). It [ollows [ruru (3.1) that

R = R% = KT. .. (3.2)
Tap = =K[(p + PYUuUq = Pgap + (P = P)HoHy —3Tgey ... (3.3)
B) Maxwell’s field equation

For infinitely conducting charged fluid the only valid set of Maxwell’s equations as suggested by A.
Lichnetowicz [4] ure

{h(UBH? — UPH%); b = 0. (34
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e UCHPhy, — by, UPHE 4 hUH® p + hHPU® ), — quone =g (3.5)
I we contract this equation with U, and H, respectively we pel
"Phy, + hH® ) — hUUPH®, =0 s {(B10)
hyUP + hU?, + hUg,HAH? = 0, e (3.7)
We have the expression for the gradient of the velocity ficld in (erms of Kinematical parameters [2]
Uatb = 0oy + Wap + 2 0h4y, + U,U,, . (38)

Where hyy, = gqp — U, U,
This when used in(3.6) and (3.7) we get
hyH® + hHY , + hUH, = 0, .. (39)
hpUP +2h + hay, HOH = 0, @)
4. Local conservation Laws
"The contracted Bianchi identities provide the local conservation laws by utilizing the Einstein’s Ficld
equation. These laws are described as
TR =D e (42)
This equation with the stress energy tensor for Magnetofluid given by (2.4) provides
a) The equation of continuity in the form
5+(ﬁ+ﬁ)9+(P—l3)H“;beUa =0 .. (4.3)
Where overhead dot denotes the covariant derivative along the flow vector U®. If we use the Maxwell’s
equation (3.5) and (4.3) then we get the equation of continuity for the Magnetofluid in the fortn
(P = %uh®) + (5 + P)6 = 0 (44
b) This equation of continuity when substituted in the general expression of (4.2) we get the equation of
streamlines, viz.
(B +P)U% + PU% + (P - Py, 1Y
~Ppg® + (P = P), HOH® + (P — PYH® ,Hb + (p — P)HeHY ), = 0 . (45)
This equation describes the deviation of fluid path from the geodesic path U% = 0
¢) The equation (4.2) when contracted with Uy we get
(ﬁ+ﬁ)U“Hu—ath—(P—ﬁ)H"m =0 oo (4.6)
5. Group of conformal motions
A space time is said to admit a group of conformal motions in the direction of arbitrary vector
field x, if the following condition is satisfied [3]
LyGab = Y Gap < (8.1
Here, ) is an arbitrary function of co-ordinates,
Remark: If 1) = 0 then (5.1) degenerates into the group of motions, We now study the properties of
anisotropic Mugnietofluid under the symmetry of proup of conformal motions given by (5.1).
Theorem (5.1): For the anisotropic Magnetofluid admitting a group of conformal motions along an arbitrary
vector field X. The following results are equivalent:
(1) l/);b =0
2) @ Lup+1p =0
(b) Lyl tyYP -0
(€ LyP+yP—0
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Proof: The conditions (5.1) provides the results

LeUa = (£) U, LU = — (%) vt . (5.2
LH, = (%) H,,. o (5.3)
LH® = - () e, . (54

Now, we find the expression for LyTqp by making use of (e cquations (2.4) and (5.1) - (5.4) .
L-xTub - IIL.r!'_J + Lx‘a + lﬂ(ﬁ + ﬁ)]UuUb - .gm:li'xﬁ + V/pl + [I;xl’ - pr + l/)(P - p)]HaHb (5-5)
We utilize the defining expression of tensor Ryto write the value of Lic derivative of the Ricei tensor field %

in the form

1
LxRab = Eng[(Lxgcd);ab - (Lxgbd);ca - (Lxgad);cb + (Lxgab);cd]- (5'6>
If the conditions (5.1) ate used this equation reduces to
1
LxRab . l/’;ab + Egab(dnp)’ (57

Where ¢t = 1,459

In the similar way we detive

LiR = Ly(g®Rap) = 39 — yR. ... (5.)
Thus we find the value of Einstein’s tensor Gap = Ry, ~ % Rgap as given by
1
LyGap = ,qp _Egabd)l/)- (3.9

Further the Einstein’s field equations (3.1) with the use of expressions (5.9) and (5.5) generate the result,

1
t/);ab - Egab(plp
= ~klLup + LyP + (5 + P)UUp — Gy [LoP + P] + [LyP — LB + (P

- P)]HaHb-
wonr (5.10)
Now we prove that (1) = (2).
We have, by (1).
Yap = 0. .. (5.11)
This implics that
Py = 0. e (5.12)
Hence the left hand side of (9.10) is zero, which gives
[Lxp + LyP +9(5 + P)|U,U, — Gap[LyP + PP + [LyP ~ L,P + (P — P)]H,H), =0 .. (5.13)
This equation when transvected with U%U?, h*h? gnd §a5b provides the following required conditions:
pr: + 1,[)63 =0;
L,P+yYP=0;
LyP +yP =0, .. (5.19)

This proves that (1) = (2).
Now, we establish (2) = (1).
If we use the condition (5.14) in the equation (5.10) we get

1
Viab =5 dapdP = 0. ... (5.15)
This immediately gives
¢ = 0. ... (5.16)
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Conscquently, (5.15) yields
Y.qp = 0. ... (5.16%)
Hence, the proof of the theorem is complete.
Remark 1: This theorem provides the necessary and sufficient dynaimical conditions for Y.ap = 0.
Remark 2: For special conformal motions as considered by 1errera e-tal 3] the condition P.qp = 0 is
Self-evident.
Further by utilizing the condition (5.1) —of conformal motion along, the arbitrary vector field ¥, one can
derive conservation law in the form
(REx?).q = 0. .. (5.17)
For this conservation law we study the following two cases.

Case (1).The field vectorX has the direction of magnetic field vector

H, ie x, = hH,. ... (5.18)
Now (5.1) and (5.17) yield the result by the use of (3.2)
PP 5l
kE+E+P]=0. .. (619
This implies p + P — 2P = 0,as § # 0. ... (5.20)

Remark 3:1t follows from (5.20) that the anisotropic Magnetofluid admitting the group of conformal
motions satisfies the equation of state p + P = 2p
Case (2).The field vector X has the direction of Sg i.e.
Xgq = aSq , ais an scalar. ... (5.21)
With the choice of conservation law (5.17) with the value of Rgp given by (3.2) produces % (p—-P)=0,
ie. p=Pk#0. .. (5.22)
Remark 4: The equation (5.22) gives the equation of state for the Magnctofluid allowing a group of
conformal motion along the vector S, which is normal to both Ugand H.
Rematk 5: The equations of states as obtained by (5.20) and (5.22) are quite different than the equations of

state derived by Herrera et al. [3]. This change is due to the presence of the magnetic field only.
6. Conformal motions along some preferred directions.

X, =¢U,. .. {6.1)
For this case the condition for conformal motions (5.1) gives
gf/a 9ab = ¥YGab- .. (6.2)
This will imply
E=2 e (63)
And
3
§0 =S .. (6.4
Further, the corresponding conservation law provides
(R§EUP),a =0, . (6.5)
ie. (p+P+2P)E@—-Y)+&]=0 ... (6.6)
This when supplemented with the conditions (6.3) and (6.4) gives the result
¥ = 0 when (p + P + 2P) # 0. . (6.7)

Hence we conclude that the conformal motion along time like direction is not admissible for the anisotropic

fluid distribution since in this case the contormal motion degenerates into a group of motions.
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Case(3).Conformal motions in the ditrection parallel to magnetic ficld vector.
Hence we write

Xxq = hH,. ... (6.8)
For this choice the conditions (5.1) imply
h,aHb + h,bHa + h(Ha;b iis Hb;a) . lpgab- 0 (6.9)
The contradiction for this supply
Y =2h H ] e (6.10)
hoH* + hH® ; = 21. S (611)
Consequently
hH%., = 3h,H% L (612)
We use this equation (6.12) in equation (3.8) to obtain an intersecting result
4h H® + hu H® = 0. . (6.13)
Conclusion: We get from (6.3)
hoH* =0 © UH® = 0. e (6.14)

This states that in space time of the anisotropic Magnetofluid admitting a group of conformal motions in (he
direction of magnetic field vector the magnitude of the magnetic ficld is preserved along the magnetic lines if

and only if the four acceleration of the fluid is orthogonal to magnetic lines. Further we have by definition of
Lie derivative

Uy = h8[(Up),a — (Ua).s]. . (615)
But we have the expression
Uasp = Oap + Wap +35 0hap + UgUy .. (6.16)
Due to Greenberg [2] and
U= (¥, o (6.17)
Due to Herrera et al.[3]. Hence by virtue of equations (6.15) — (6.17) we get the results
Y = —20,h%, ... (6.18)
And
Warh? = 0. ... (6.19)

It follows from (6.19) that the magnetic field is normal to the plane of totation,
Conclusion: For the space time of Magnetofluid admitting a group of conformal motions along the magnetic
field vector the magnetic field lines are always perpendicular to the plane of rotation.
7. Concluding remarks
A class of exact solutions of anisotropic Magnetofluid space time admitting conformal motions is
found by Surve and Asgekar [5]. These models are desctibed by the line element
ds* = (mr)?dt? — 2ny~1)2dr? —r2(d6? + sin?8d¢?) ... (1.1)
With 1 as arbitrary function of .
() The results (5.20), (6.7), (6.18), (6.19) are consistent with the patticular solutions of (7.1).
(b) The deduction (5.22) generates a differential equation the solution of which belongs to the class of
solution given by (7.1).
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